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Finite elements are a good foundation for large-scale
simulations on current and future architectures

= Backed by well-developed theory.
= Naturally support unstructured and curvilinear grids.

= High-order finite elements on high-order meshes
* Increased accuracy for smooth problems
+ Sub-element modeling for problems with shocks

« Bridge unstructured/structured grids ; _
Non-conforming mesh refinement

* Bridge sparse/dense linear algebra on high-order curved meshes
« FLOPs/bytes increase with the order

= Demonstrated match for compressible shock
hydrodynamics (BLAST).

= Applicable to variety of physics (DeRham complex).

H(grad) -5 H (curd)| 25| H (div)| 25| Lo
“nodes” “edges” “faces” “zones”

High-order High-order High-order High-order 8th order Lagrangian hydro simulation
kinematics MHD rad. diff. thermodynamics of a shock triple-point interaction
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Modular Finite Element Methods (MFEM)

MFEM is an open-source C++ library for scalable FE research

and fast application prototyping D

= Triangular, quadrilateral, tetrahedral and hexahedral; ,
volume and surface meshes

= Arbitrary order curvilinear mesh elements

= Arbitrary-order H1, H(curl), H(div)- and L2 elements Linear, quadratic and cubic finite
element spaces on curved meshes

= Local conforming and non-conforming refinement
= NURBS geometries and discretizations

= Bilinear/linear forms for variety of methods (Galerkin,
DG, DPG, Isogeometric, ...)

= [Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU,
PUMI, Vislt, Spack, xSDK, OpenHPC, and more....

= Parallel and highly performant mfem.org
(v3.4, May/2018)

= Main component of ECP’s co-design Center for Efficient

Exascale Discretizations (CEED) E\(’C\\P ra“" CEED

= Native “in-situ” visualization: GLVis, glvis.org

éib ’xSDK
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Example 1 — Laplace equation

= Mesh = Linear solve

63 // 2. Read the mesh from the given mesh file. We can handle triangular, 130 | #ifndef MFEM USE SUITESPARSE
64 I quadrilateral, tetrahedral, hexahedral, surface and volume meshes with 131 // B. Define a simple symmetric Gauss-Seidel preconditioner and use it to
65 /7 the same code. 132 s solve the system Ax=b with PCG.
66 Mesh #*mesh; 133 GSSmoother M{(a);
&7 ifstream imesh(mesh_file); 134 PCG(A, M, *b, x, 1, 200, le-12, 0.0);
68 if {limesh) 135 | #else
69 { 136 /f B. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
70 cerr << "\nCan not open mesh file: " << mesh file << "\n' << endl; 137 UMFPackSolver umf_solver;
71 return 2; - 138 umf_solver.Control [UMFPACK ORDERING] = UMFPACK ORDERING METIS;
72 } 139 umf_solver.SetOperator(A);
73 mesh = new Mesh({imesh, 1, 1); 140 umf_solver.Mult(*b, x};
74 imesh.elose(); 141 | #endif
75 int dim = mesh->Dimension{);
76 . . .
77 // 3. Refine the mesh to increase the resolution. In this example we do [ ] V I t
78 I 'ref_levels' of uniform refinement. We choose 'ref_levels' tc be the Isua lza lon
79 / largest number that gives a final mesh with no more than 50,000
BO I elements.
81 { . 152 // 10. Send the solution by socket to a GLVis server.
82 int ref levels = 153 if (visualization)
B3 {int)floor(log(50000./mesh->CetNE())/log(2.)/dim); 154 r
B4 for (int 1 = 0; 1 < ref levels; 1l++) : _— ",
85 mesh—)Unifo;:mRefinemEnt(]- r 155 char wvishost[] = "localhost”;
26 b u 156 int wvisport = 19916;
° 157 socketstream sol_sock(vishost, visport);
158 sol_sock.precision(8);
. . %{5;3 n sol_sock << "solution\n" << *mesh << x << flush;
= Finite element space
B8 // 4. Define a finite element space on the mesh. Here we use continucus 8 00 |X| GLVis [scalar data]
B9 7 Lagrange finite elements of the specified order. If order < 1, we
90 I instead use an isoparametric/isogeometric space.
91 FiniteElementCollection *fec;
92 if (order > 0)
93 fec = new H1_FECollection(order, dim);
94 else if (mesh->GetNodes())
95 fec = mesh->GetNodes()->OwnFEC();
96 else
97 fec = new Hl_FECollection(order = 1, dim);
98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
99 cout << "Number of unknowns: " << fespace->GCetVSize{) << endl;
o, 0 . ofe
= |nitial guess, linear/bilinear forms
101 // 5. Set up the linear form b{.) which corresponds to the right-hand side of
102 7 the FEM linear system, which in this case is (1,phi_i) where phi_i are
103 7 the basis functions in the finite element fespace.
104 LinearForm *b = new LinearForm(fespace);
105 ConstantCoefficient one(l.0);
106 b->AddDomainIntegrator (new DomainLFIntegrator({one));
107 b->Assemble();
108
109 // 6. Define the solution vector x as a finite element grid function
110 1A corresponding to fespace. Initialize x with initial guess of zero,
111 7 which satisfies the boundary conditions.
112 GridFunction x(fespace);
113 x = 0.0;
114
115 // 7. Set up the bilinear form a{.,.) on the finite element space
116 7 corresponding to the Laplacian operator -Delta, by adding the Diffusion
117 7 domain integrator and imposing homogeneous Dirichlet boundary 4
118 7 conditions. The boundary conditions are implemented by marking all the
119 7 boundary attributes from the mesh as essential (Dirichlet). After
120 Iz assembly and finalizing we extract the corresponding sparse matrix A.
121 BilinearForm *a = new BilinearForm(fespace); | | Works for any mesh & any H1 Order
122 a->AddDomainIntegrator (new DiffusionIntegrator(one));
123 a=>hssemble();
124 Array<int> ess_bdr(mesh->bdr_attributes.Max());
125 ess_bdr = 1; b -Id . h I d d 0
126 a=>EliminateEssentialBC({ess bdr, x, *b);
6500 5, 2, = Dbuilds without external dependencies
128 const SparseMatrix &A = a->SpMat();
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Example 1 — Laplace equation

= Mesh
63 ff 2. RBead the mesh from the given mesh file. We can handle triangular,
64 fr quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
65 fr the same code.
66 Mesh *mesh;
67 ifstream imesh(mesh file);
68 if (limesh)
69 {
70 cerr << "‘\nCan not open mesh file: " << mesh file << "\n' << endl;
71 return 2;
72 }
73 mesh = new Mesh(imesh, 1, 1);
74 imesh.close();
75 int dim = mesh-*Dimension{):
76
77 f/f 3. Refine the mesh to increase the resolution. In this example we do
78 Hf 'ref levels' of uniform refinement. We choose 'ref levels' to be the
79 fr largest number that gives a final mesh with no more than 50,000
EO fr elements.
Bl {
B2 int ref levels =
B3 (int)floor(log({50000./mesh->GetNE({))/log(2.)/dim);
B4 for (int 1 = 0; 1 < ref levels; 1++)
ES mesh=->UniformRefinement () ;
B6 }
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Example 1 — Laplace equation

= Finite element space

B8 ff 4. Define a finite element space on the mesh. Here we use continuocus
B9 i Lagrange finite elements of the specified order. If order < 1, we
90 i instead use an isoparametric/isocgeometric space.

91 FiniteElementCollection *fec;

92 if (order > 0)

93 fec = new Hl FECollection(order, dim);

94 glse if (mesh->GetNodes())

a5 fec = mesh->CetNodes () ->0wnFEC( ) ;

96 else

a7 fec = new Hl FECollection(order = 1, dim);

98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);

99 cout << "Number of unknowns: " << fespace->GetVSize() << endl;
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Example 1 — Laplace equation

= |nitial guess, linear/bilinear forms

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

/f 5. Set up the linear form b({.) which corresponds to the right-hand side of
Fi the FEM linear system, which in this case is (l,phi i) where phi i are
fr the basis funections in the finite element fespace.

LinearForm *bk = new LinearForm{fespace);

ConstantCoefficient one(l1.0);

b=->AddDomainIntegrator({new DomainLFIntegrator{one));

b->Assemble():

// 6. Define the solution vector x as a finite element grid funection

Fi corresponding to fespace. Initialize x with initial guess of zero,

Ff which satisfies the boundary conditions.

GridFunction x(fespace);

x = 0.0;:

//f 7. Set up the bilinear form a(.,.) on the finite element space

i corresponding to the Laplacian operator -Delta, by adding the Diffusion
i domain integrator and imposing homogeneous Dirichlet boundary

h conditions. The boundary conditions are implemented by marking all the
Fi boundary attributes from the mesh as essential (Dirichlet). After

rf assembly and finalizing we extract the corresponding sparse matrix A.

BilinearForm *a = new BilinearForm(fespace);
a->*AddDomainIntegrator(new DiffusionIntegrator{one)):
a=>hssemble():

Array<int> ess bdr(mesh->bdr attributes.Max())};

ess _bdr = 1;

a->*EliminateEssentialBC({ess bdr, x, *b);
a=>*Finalize():

const SparseMatrix &R = a->SpMat();:
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Example 1 — Laplace equation

= Linear solve

130
131
132
133
134
135
136
137
138
139
140
141

#ifndef MFEM USE SUITESPARSE
//f B. Define a simple symmetric Gauss-Seidel preconditioner and use it to
i solve the system Ax=b with POG.
GSSmoother M{A):
PCG(A, M, *b, x, 1, 200, le-12, 0.0);
felse
// B. If MFEM was compiled with SuiteSparse, use UMFPACEK to solve the system.
UMFPackSolver umf solver;
umf solver.Control [UMFPACK ORDERING] = UMFPACK ORDERING METIS;
umf solver.SetOperator(A);
umf solver.Mult{*b, x);
#endif

= Visualization

152
153
154
155
156
157
158
159
160

f/ 10. Send the solution by socket to a GLVis server.
if (visualization)

{

char wishost[] = "localhost":

int wisport = 19916;

socketstream socl sock(vishost, visport):

sol sock.precision(8);

sol_sock << "solution\n" << *mesh << x << flush;
}
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Example 1 — parallel Laplace equation

= Parallel mesh = Parallel linear solve with AMG

101 ff 5. Define a parallel mesh by a partitioning of the serial mesh. Refine

102 fFr this mesh further in parallel to increase the resclution. Once the 164 /f 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
103 fr parallel mesh is defined, the serial mesh can be deleted. 165 fr preconditioner from hypre.

104 ParMesh *pmesh = new ParMesh(MPI COMM WORLD, *mesh}); 166 HypreSolver *amg = new HypreBoomerAMG(*A);:

105 delete mesh; 167 ByprePCG *pcg = new HyprePCG(*A);

106 { 168 peg->SetTol {le-12);

107 int par_ref_ levels = 2; 169 pog=->SetMaxTter({200);

108 for (int 1 = 0; 1 < par ref levels; 1l++) 170 pcg->SetPrintLevel (2);

109 pmesh->UniformRefinement(); 171 peg->SetPreconditioner(*amg);

110 } 172 peg->Mult (*B, *X);

= Visualization

RO
DO,
A
AR
\VAVAVA

B
Ry
BB 194 // 14. Send the sclution by socket to a GLVis server.
KR 185 if (visualization)
s 196
P 197 char vishost[] = "localhost";
s 198 int visport = 19916;
SR 199 socketstream sol_sock(vishost, wisport);
RRRR 200 sol_sock << "parallel " << num procs << " " << myid << "\n";
SRN 201 sol_sock.precision(8);
202 sol_sock << "solution\n" << *pmesh << x << flush;
o e 203 )
= Parallel finite element space
800 IX| GLVis [scalar data]

122 ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);

L] L] L] . L] %
PPEe . . . ?

(2)

P :true_dof — dof

= Parallel initial guess, linear/bilinear forms w,ﬂ‘

v

130 ParLinearForm *b = new ParlinearForm{fespace);
138| ParGridFunction x(fespace);
147| ParBilinearForm *a = new ParBilinearForm(fespace);

= Parallel assembly

155 // 10. Define the parallel (hypre) matrix and vectors representing a(.,.),

156 Iy b{.) and the finite element approximation. o . . .

157 HypreParMatrix *A = a=>ParallelAssemble();

158 HBypreParVector *B = b->ParallellAssemble(); u l y Sca a e Wl I I llnll I la C an eS
159 HypreParVector *X = x.ParallelAverage();

A=P'aP  B=P'b xz=PX = build depends on hypre and METIS
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MFEM example codes — mfem.org/examples

MFEM: Example Codes
| + | ® doxygen.mfem.googlecode.com 4
Apple Yahoo! Google Maps YouTube Wikipedia News ™  Popular ¥

MFEM .0
e

Example Codes

This file provides a brief overview of the MFEM example codes. For detailed documentation of the MFEM sources, including the examples, build the Doxygen documentation in the doc/ directory, or browse the online version.

Clicking on any of the categories below displays examples that contain the feature. All les support ily) high-order meshes and finite element spaces. The numerical results from the example codes can be visualized
using the GLVis visualization tool (based on MFEM). See the GLVis website, for more details.

Users are encouraged to submit any example codes that they have created and would like to share. Contact a member of the MFEM team to report bugs or post questions or comments.

Equation (PDE) Finite Elements Discretization Solver

@Al @Al @Al @Al
(ULaplace () L discontinuous elements (_)Galerkin FEM (OJacobi

_ Elasticity () H* nodal elements _)Mixed FEM _Gauss-Seidel
~Definite Maxwell () H{curl) Nedelec elements ~ Discontinuous Galerkin (DG) PGG
*grad-div () H(div) Raviart-Thomas elements ~)Discontinuous Petrov-Galerkin (DPG) “MINRES

~)Algebraic Multigrid (BoomerAMG)

D Auxiliary-space Maxwell Solver (AMS)
Auxiliary-space Divergence Solver (ADS)
_UMFPACK (serial direct)

_)Newton method (nonlinear solver)
_Explicit Runge-Kutta (ODE integration)
~)Implicit Runge-Kutta (ODE integration)

()Darey () H—% intertacial elements
(Advection

()lsogeometric analysis (NURBS)
daptive mesh refinement (AMR)

Example 1: Laplace Problem
This example code demonstrates the use of MFEM to define a simple finite element i of the Laplace problem

—Au=

with homogeneous Dirichlet boundary conditions. Specifically, we discretize with the FE space coming from the mesh (linear by default, guadratic for quadratic curvilinear mesh, NURBS
for NURBS mesh, etc.)

The example highlights the use of mesh refinement, finite element grid functions, as well as linear and bilinear forms corresponding to the left-hand side and right-hand side of the discrete
linear system. We also cover the explicit elimination of boundary conditions on all boundary edges, and the optional connection to the GLVis tool for visualization.

The example has a serial (ex1.cpp) and a parallel (ex1p.cpp) version.

Example 2: Linear Elasticity

This example code solves a simple linear elasticity problem a multi-material cantilever beam. we approxi the weak form of
—div(o(u)) =0
where
a(u) = Adiv(u) I + p (Vu+ VuT)

is the stress tensor corresponding to displacement field 1, and ) and f are the material Lame constants. The boundary conditions are 13 = () on the fixed part of the
boundary with attribute 1, and g{u) - n = f on the remainder with f being a constant pull down vector on boundary elements with attribute 2, and zero otherwise. The

geometry of the domain is assumed to be as follows:

boundary boundary
attribute 1 material 1 material 2 attribute 2
(fixed) (pull down)
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Discretization Demo & Lesson

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/mfem_convergence/
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Application to high-order ALE shock hydrodynamics

hypre: Scalable linear MFEM: Modular finite BLAST: High-order ALE shock
solvers library element methods library hydrodynamics research code

www.lInl.gov/casc/hypre mfem.org www.lInl.gov/casc/blast

= hypre provides scalable algebraic multigrid solvers

= MFEM provides finite element discretization abstractions
* uses hypre’s parallel data structures, provides finite element info to solvers

= BLAST solves the Euler equations using a high-order ALE framework
« combines and extends MFEM'’s objects

12 ATPESC 2020, July 26 — August 7, 2020



BLAST models shock hydrodynamics using high-order FEM
in both Lagrangian and Remap phases of ALE

Lagrange phase

Remap phase

Physical time evolution Pseudo-time evolution

Based on physical motion Based on mesh motion

Lagrangian phase (¢ = 0) \‘\ 7 -~ Advection phase (¢ = —Vpy)
. dv 2 d(pv .
Momentum Conservation: PE =V.o (/ Gauss-Lobatto basis Momentum Conservation: % = Vm - V(pV)
. dp - g . . dp
Mass Conservation: Frie —pV -V %+ Discont. Galerkin Mass Conservation: I Vm - Vp
T
) de . d
Energy Conservation: pa =o0:Vv Energy Conservation: % = Vm - V(pe)
T
dx Z Z g g 22?_\: ; =
Equation of Motion: Xy Mesh velocity: Vm = dx
dt Bernstein basis dr |




High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simulations

Symmetry in
3D implosion

Robustness in
Parallel ALE for Q4 Rayleigh- Lagrangian shock-3pt
Taylor instability (256 cores) axisymm. interaction
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High-order finite elements have excellent strong scalability

Strong scaling, p-refinement

BLAST Strong Scaling on Vulcan

10000 2D Lagrangian Sedov Problem on 131,072 zones
<-SGH Code
00~ ~600 dofs/zone Q2 FEM (Inline)
b ~-Q4 FEM (Inline)
--Q8 FEM (Inline)

©Q16 FEM (Inline)

Strong scaling, fixed #dofs

Time log10(s)

1 zone/core

Number of cores

Finite element partial assembly

15 ATPESC 2020, July 26 — August 7, 2020

e “= SGH
;\ 2D .
400 - 256K DOFs Q100 Sl
| Q201 5Ll
==
200 Q403_SL!
9 \
(4]
.E 1.00 256 cores
c
=]
/4

0.50

0.25

0.13

more FLOPs, | =
same runtime

2 4 8 16 32 64
Nodes

FLOPs increase faster than runtime



Unstructured Mesh R&D: Mesh optimization and high-
quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation by neo-Hookean DG advection-based interpolation (ALE
evolution (Example 10, ALE remesh) remap, Example 9, radiation transport)
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Unstructured Mesh R&D: Accurate and flexible finite
element visualization

Two visualization options for high-order functions on high-order meshes

GLVis: native MFEM lightweight OpenGL Vislt: general data analysis tool, MFEM
visualization tool support since version 2.9

BLAST computation on 2nd
order tet mesh

glvis.org visit.linl.gov
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MFEM'’s unstructured AMR infrastructure

Adaptive mesh refinement on library level:
— Conforming local refinement on simplex meshes
— Non-conforming refinement for quad/hex meshes

— h-refinement with fixed p

General approach:

— any high-order finite element space, H1, H(curl),
H(div), ..., on any high-order curved mesh

Example 15

— 2Dand 3D

— arbitrary order hanging nodes

— anisotropic refinement

— derefinement

— serial and parallel, including parallel load balancing

— independent of the physics (easy to incorporate in
applications)

Shaper miniapp

ATPESC 2020, July 26 — August 7, 2020



Nonconforming variational restriction
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Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh
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Nonconforming variational restriction

=Px

Conforming solution y
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AMR = smaller error for same number of unknowns

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)

1o [ ' ! ! ! uniforﬁj refinement '
i 1t,21,4h, 8% order
10 = .‘ S oo - \*:—"_ ................................................................................ e ........ ol
'g i — R consroe poserssssasnssmmmsaasanrbnsensnsnsgsnensesmspooncdnmongn e _:_‘ﬁéfﬁ._‘.;,_\.::::...,.j.é ....... d
o : ety
= £ — . §
g oilo - S — S 1 order AR 3
= ' 5 | R T W
S 001 P A B ey pa— e 2 order AMR
= F : s z ;o
.0 - :
S I S NG . SO .. SN S SN _
E 0.001 : ‘
= ; z
g_ order 1 uniform ---e---
9 00001 F  order2uniform e s AT order AMR
< I order 4 uniform ---e--- i
order 8 uniform -+~
" order 1 aniso AMR —e— 5 | ; ;
1e_05 - orderzaniso AMR —— ." , .......................... , ........ =
- order 4 aniso AMR —— ; 8t order AMR L
| order 8 aniso AMR —+— §
16-06 i i i | i |
0 50 100 150 200 250 300

Square root of the number of unknowns
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shock-like fields in 2D & 3D




Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and Parallel load balancing based on space-
derefinement. 2"9 order Lagrangian Sedov filling curve partitioning, 16 cores
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ParaIIeI AMR scalmg to "'400K MPI tasks

100 —
o0
©
c
S
& 10 -
- C
8
@
2
g
=
<
S
Q
£
= 1+
|

|deaI strong scallng —_—

weak scaling - |

size 0.6M —=— |

size IM —— |
size 2M —e—

sizedM ——=— ]
size 8M ———

size 16M 1
size 32M ——=—

size 64M

64

128 256 512

1K

2K

4K 8K
CPU cores

16K 32K 64K 128K 256K 384K

* weak+strong scaling up to ~400K MPI tasks on BG/Q

o7

7 EE

[
[

Parallel decomposition
(2048 domains shown)

Parallel partitioning via
Hilbert curve

* measure AMR only components: interpolation matrix, assembly, marking,

refinement & rebalancing (no linear solves, no “physics”)
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LEELJ

EXASCALE DISCRETIZATIONS

ceed.exascaleproject.org

* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh  curved meshes,
v unstructured AMR  optimized low-order support

o

10% order basis function non-conforming AMR, 2" order mesh

* state-of-the art CEED discretization libraries

v better exploit the hardware to deliver significant performance
gain over conventional methods

v based on MFEM/Nek, low & high-level APIs

I

=

2 Labs, 5 Universities, 30+ researchers

neks5000.mcs.anl.gov
25 ATPESC 2020, July 26 — August 7, 2020

mfem.org
High-performance spectral elements

Scalable high-order finite elements



CEED Bake-off Problem 1 on CPU

:MFEM (512 nodes, 32 tasks/node), xIlc, BP1 V1

» deal.ll (512 nodes, 32 tasks/node), gcc, BP1

Points per compute node

(a) BP1 MFEM-before

Points per compute node

(b) BP1 MFEM-after

BE MFEM (512 nodes, 32 tasks/node), xlc, BP1 V1 T w6
-g —o— p=1, q=p+2 -g —— p=2, q=p+2 -g —o— p=1, q=p+2
8 p=2, g=p+2 8 p=3, q=p+2 8 p=2, q=p+2
Q 74 % p=3,q=p+2 Q 7{ —* p=4,q=p+2 Q 74 ~* p=3,q=p+2
0 —e— p=4,q=p+2 w —e— p=5, q=p+2 0 —o— p=4, g=p+2
z —e— p=5, q=p+2 :) —e— p=6, q=p+2 z —e— p=5, q=p+2
e p=6, q=p+2 Ve p=7,q=p+2 Ve p=6, g=p+2
S p=7,q=p+2 8 p=8, q=p+2 e p=7,q=p+2
[ = p=8, q=p+2 | = p=9, q=p+2 c p=8, q=p+2
8 5 —e— p=9, q=p+2 &) 5 —e— p=10, q=p+2 8 5 —e— p=9, q=p+2
= —e— p=10, q=p+2 3 —e— p=11, q=p+2 3 —e— p=10, q=p+2
g— —o— p=11, q=p+2 g— —e— p=12, q=p+2 g' —e— p=11, g=p+2
o —e— p=12, q=p+2 o —— p=13, q=p+2 ) —e— p=12, q=p+2
O 41 —e p=13,g=p+2 O 41 — p=14,q=p+2 O 41 — p=13,q=p+2
~ p=14, q=p+2 ~ ~ p=14, q=p+2
‘» _ | —* p=15q=p+2 ) 5 ) 3 —e— p=15, q=p+2
= =16, q= c c =16, g=
S 3 p=16, q=p+2 S S p=16, g=p+2
o e g
£2 22 22
U] ] ]
(O] O O
%1 x 1 1
n ) )
) o) . & |
-y ._-’J‘/'/w :
a9 =X . 7 29 1 2 4 5 6 7
=10t 10?2 103 104 10° 106 107 =10t 102 10° 10* 10° 106 107 =10 10 10° 10 10 10 10

Points per compute node

(c) BP1 deal.Il

* All runs done on BG/Q (for repeatability), 8192 cores in C32 mode.
Orderp =1, ...,,16; quad. pointsq=p + 2.

e BP1 results of MFEM+xIc (left), MFEM+xlc+intrinsics (center), and
deal.ii + gcc (right) on BG/Q.

* Preliminary results — paper in preparation

» Cooperation/collaboration is what makes the bake-offs rewarding.
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High-order methods show promise for high-quality &
performance simulations on exascale platforms

= More information and publications
* MFEM - mfem.org

« BLAST - computation.linl.gov/projects/blast

» CEED - ceed.exascaleproject.org

= Open-source software

e |

el I

‘ EXASCALE DISCRETIZATIONS

= Ongoing R&D

+ Porting to GPUs: Summit and Sierra

« Efficient high-order methods on simplices

Q4 Rayleigh-Taylor single-
material ALE on 256 processors

« Matrix-free scalable preconditioners

27 ATPESC 2020, July 26 — August 7, 2020
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Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh

topology, basis, and // components:
A=P'G"BTDBGP
global domain sub-domains elements quadrature
all (shared) dofs device (local) dofs element dofs point values q
P G B
> —lp —p
— - & & @ - @ - @ — —
PT GT BT
T-vector L-vector E-vector Q-vector
L L LR element APl ------------ >
paintetde il device AP| ------------------------ >
D it global AP] ----------------------c-commmoos

* partial assembly = store only D, evaluate B (tensor-product structure)
* better representation than A: optimal memory, near-optimal FLOPs
* purely algebraic, applicable to many apps
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CEED high-order benchmarks (BPs)

» CEED's bake-off problems (BPs) are high-order kernels/benchmarks
designed to test and compare the performance of high-order codes.

BP1: Solve {Mu=f}, where {M} is the mass matrix, q=p+2

s|  [Elements
— ~
L] * ® L I L N
[} * & - & - &
L] * * o L N
N
wopeeJ Jo seeiba(]

BP2: Solve the vector system {Mu.=f} with {M} from BP1, g=p+2

[Processors

BP3: Solve {Au=f}, where {A} is the Poisson operator, q=p+2

BP4: Solve the vector system {Au.=f} with {A} from BP3, g=p+2

" wopsay jo e Baq)

BP5: Solve {Au=f}, where {A} is the Poisson operator, g=p+1

Elements |

BP6: Solve the vector system {Au.=f} with {A} from BP3, q=p+1

(Processars

* Compared Nek and MFEM implementations on BG/Q, KNLs, GPUs.

« Community involvement - deal.ii, interested in seeing your results. _
BP terminology: T- and E-

vectors of HO dofs
* Goalis to learn from each other, benefit all CEED-enabled apps.

github.com/ceed/benchmarks
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Tensorized partial assembly

Bki — @Z(Qk) — Qagld(QM)gpzlgd(q/fz) = B/}:f’u B/i;lzz Uk1k2 — Bld Bld Wliz = U= BldV(Bld)T

k111 kata

500

p — order, d — mesh dim, O(p?) — dofs

Partial Assembly

Method WEMDY | ASSEmI Action
y ly

Full Matrix 0(p2d) 0(p3d) 0(p2d)

Assembly

100 1

Full Matrix Assembly

DOF / sec (Millions) [CG Solve]

—8— Full Assem. C++ Templ. (2 P8 CPUs)

Partlal d d d+1 art. Assem. empl. ( s)
0 (p ) 0 (p ) 0 (p ) ::_— Ear:. 2ssem. gng-{-EnaT:Jled2 (ZSP(;PSPUS)
Assemb |y —m— Part. Assem. OCCA-Enabled (1 P100 GPU)
S
Order
Storage and floating point operation scaling for Poisson CG solve performance with different
different assembly types assembly types (higher is better)

Full matrix performance drops sharply at high orders while partial assembly scales well!
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Unstructured Mesh Methods

Unstructured mesh — a spatial domain discretization composed
of topological entities with general connectivity and shape

Advantages Disadvantages

= Automatic mesh generation for = More complex data structures and
any level of geometric complexity Increased program complexity,

= Can provide the highest accuracy particularly in parallel
on a per degree of freedom basis = Requires careful mesh quality

= General mesh anisotropy possib|e control (level reCIUired a functipn of

= Meshes can easily be adaptively thedunstructured mesh analysis
modified code)

= Poorly shaped elements increase
condition number of global system
— makes matrix solves harder

= Given a proper geometric model,
with analysis attributes defined on
that model, the entire simulation
work flow can be automated
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Unstructured Mesh Methods

Goal of FASTMath unstructured mesh technologies:

« Component-based tools that take full advantage of
unstructured mesh methods and are easily used by
analysis code developers and users

« Components operate through multi-level APls that
Increase interoperabllity and ease integration

* Unstructured mesh tools to address needs and
eliminate/minimize disadvantages of unstructured
meshes

* Integration of these technologies with their tools to
address application needs that arise
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FASTMath Unstructured Mesh
Developments

Areas of Technology development:

Unstructured Mesh Analysis Codes — Support application’s PDE solution
needs — MFEM is a key example code

Performant Mesh Adaptation — Parallel mesh adaptation to integrate into
analysis codes to ensure solution accuracy

Dynamic Load Balancing and Task Management — Technologies to
ensure load balance and the effective execution of applications on
heterogeneous systems

Unstructured Mesh for PIC — Tools to support PIC on unstructured
meshes

Unstructured Mesh for UQ — Bringing unstructured mesh adaptation to

uQ

In Situ Vis and Data Analytics — Tools to gain insight as
simulations execute

36 ATPESC 2020, July 26 — August 7, 2020
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Performant Unstructured Meshes

* Goal

— Unstructured meshing technologies that execute on
exascale systems

— Develop versions of tools that run on accelerators (GPUS)
— Strive to have all operations on execute on GPUs

® Developing GPU based versions of
— Unstructured mesh solvers (MFEM, etc.)
— Mesh adaptation (Omega_h)
— PIC operations on Unstructured Meshes

* Relevant Software Tools
—MFEM
—Omega_h (https://qgithub.com/ibaned/omega_h)
—PUMIpic
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https://github.com/ibaned/omega_h)

Parallel Unstructured Mesh
Infrastructure
Key unstructured mesh technology needed by applications

 Effective parallel representation for adaptive mesh control
and geometry interaction provided by PUMI and Omega_h

» Base parallel functions inter-process part
— Partitioned mesh control and modification ibourl‘dary o
— Read only copies for application needs
— Associated data, grouping, etc.

0
i

|
|
|
M

« Attached fields supported

=\
N |

(

< -

Geometric model Partition model Distributed mesh 2 intra-process part
boundary
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Mesh Generation, Adaptation and
Optimization

Mesh Generation

« Automatically mesh complex domains — should work
directly from CAD, image data, etc. |4 U\

e Use tools like Gmsh, Simmetrix, etc.

Mesh Adaptation must -

« Use a posteriori information to improve mesh
based on discretization errors or user supplied
solution based criteria

« Account for curved geometry (fixed and evolving) B

« Support general anisotropic adaptation
« Support some forms of mixed mesh adaptation
Parallel execution of all functions critical on large meshes

39 ATPESC 2020, July 26 — August 7, 2020
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General Mesh Modification for Mesh
Adaptation

 Driven by an anisotropic mesh size field that can be set by any
combination of criteria

» Employ a “general set” of mesh modification operations to alter
the mesh into one that matches the given mesh size field

« Advantages
— Supports anisotropic meshes
— Can obtain level of accuracy desired
— Can deal with any level of geometric domain complexity

— Solution transfer can be applied incrementally - provides
more control to satisfy conservation constraints

O-9 O-DIL-B>-&

Edge split face split

Double split collapse to remove sliver
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Mesh Adaptation Status

Applied to very large scale models

— 92B elements on 3.1M processes
on % million cores

Local solution transfer supported
through callback

Effective storage of solution
flelds on meshes

Supports adaptation with
boundary layer meshes

7

e

=
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Mesh Adaptation Status

« Supports adaptation of curved
elements

- Adaptation based on multiple ' g
criteria, examples ©

— Level sets at interfaces
— Tracking particles
— Discretization errors

— Controlling element
shape in evolving
geometry problems

42 ATPESC 2020, July 26 — August 7, 2020
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Dynamic Load Balancing

« Purpose: to rebalance load during an evolving simulation
(mesh adaptation, particle moving through mesh, etc.)

— Goal is equal “work load” with minimum inter-process
communications - | | |
* HYPERGRAPH

« FASTMath load balancing tools -
— Zoltan/Zoltan?2 libraries that

provide multiple dynamic < 600!
partitioners with general control s
of partition objects and weights $you
— EnGPar diffusive multi-criteria  ~ * ol
partition improvement d000% TR L e
N I T R iy
0 3.2‘768 6.5536 9.8504 13.1072
Part number 4
x 10
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Architecture-aware partitioning and task
mapping reduce application communication
time at extreme scale

® Partitioning and load balancing: assign work to processes
In ways that avoid process idle time and minimize
communication

®* Task mapping: assign processes to cores in ways that
reduce messages distances and network congestion

® Important in extreme-scale systems:
— Small load imbalances can waste many resources

— Large-scale networks can cause messages to travel
long routes and induce congestion

® Challenge to develop algorithms that...
—account for underlying architectures & hierarchies

—run effectively side-by-side with application across
many platforms (multicore, GPU)
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Zoltan/Zoltan2 Toolkits: Partitioners

Suite of partitioners supports a wide range of applications;

no single partitioner is best for all applications.
Geometric

. °| + « .| Recursive Coordinate Bisection =il
’ o+ | Recursive Inertial Bisection /1V
SJA—- - ° .| Multi-Jagged Multi-section T
S L Space Filling Curves ==

PHG Graph Partitioning
Interface to ParMETIS (U. Minnesota)
Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning
Interface to PaToH (Ohio St.)

45 ATPESC 2020, July 26 — August 7, 2020

45



EnGPar quickly reduces large imbalances on
(hyper)graphs with billions of edges on up to 512K

processes
® Multi-(hyper)graph supports representing multiple types of

dependencies between application work items
® Loop over application defined list of edge types

* Diffusion sends boundary edges from 15| g nitel —@—

heavily loaded parts to lighter parts g pa| Tolerance
— Bias selection towards edges ié“ 13

that are far from the graph ‘center’ < ..

. -

— Multiple traversals of boundary I R N

with increasing limit of edge degree |

128 256 . 512

—Receiver cancels send if it imbalances Processes(Ki)

higher priority edge type

® On a 1.3B element mesh EnGPar reduced a 53% vtx
Imbalance to 6%, elm imbalance of 5%,
edge cut increase by 1% (took 8 seconds)
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Parallel Unstructured Mesh PIC — PUMIpic

Current approaches have copy of entire mesh on each process

PUMIpic supports a distributed mesh
- Employ large overlaps to avoid communication during push
- All particle information accessed through the mesh

-

Field to Particle
(mesh — particle)

\ E(x) - E(x), B(x) —> B(x)

/ Particle Push (update x, v) \

Red and Blue designate
guantities associated with

m F
dt
= g(E(x) + v x B(x)) Y
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particles and mesh, resp.

Field solve on mesh
with new RHS

VEgp(x) = 4 mtp(x)
E(x) = —V¢(x)

Charge Deposition \
(particle — mesh)

p(x) — p(a) /




Parallel Unstructured Mesh PIC — PUMIpic

Components interacting with mesh
— Mesh distribution

— Particle migration

— Adjacency search

— Charge-to-mesh mapping

— Field-to-Particle mapping

— Dynamic load balancing

— Continuum solve

 Builds on parallel unstructured
mesh infrastructure

» Developing set of components
to be integrated into applications

— XGC — Gyrokinetic Code
— GITR - Impurity Transport
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Times in milliseconds

Total Search Timings on Sampled Compute Ranks

T T T T T T T T
16 17 18 19 20 21 22 23
Compute Ranks

=
(=] = %] w - i (=] -~ (==} w (=]
| | | | | i | | |

Adjacency search XGC1 grid search |

Require knowledge of
element that particle is in
after push
m Particle motion “small”
per time step
m Using mesh adjacencies
on distributed mesh
m Overall 4 times
Improvement

48




PUMIpic Data Structures

* The layout of particles in memory is critical for high performance push,
scatter, and gather operations on GPUs.

®* Mesh data structure requirements:
— Provide required adjacency information on GPU

— Reduce irregular memory accesses by building arrays of mesh field
Information needed for particles.

* Particle data structure requirements:
— Optimizes push, scatter, and gather operations
— Associates particles with mesh elements
— Changes in the number of particles per element

— Evenly distributes work with a range of particle distributions (e.g.
uniform, Gaussian, exponential, etc.)

— Stores a lot of particles per GPU — low overhead
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Mesh Data — Omega h

® Omega_h features

— Compact arrays ordered so that adjacent
entities are aligned

— BFS-like algorithms for effective local serial
— Space filling curves to support parallelization

— Independent set construction
(currently for mesh adaptation)

— On-node OpenMP or CUDA
parallelism using Kokkos

github.com/ibaned/omega_h
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Particle Data Structures (cont.)

®* Particles associated with e

elements in mesh
* Sell-C-o (SCS) structure selected

—Layout: rotated and sorted SIMD Group 3 il

CSR, a row has the particles
of an element

— Pros — Fast push, lower memory
usage for scatter/gather

— Cons — Complexity

4 | H
£ I
| £
T e 1 N i
i
i
/ i JAl O Ol
H i

SIMD Group 2

——

T R SIMD Group 4

12 ceIIs used

Sell-4-12 (full sorting)

SCS with vertical slicing (bottom)

Besta, Marending, Hoefler, IPDPS 2017 51

®* Demonstrated good strong scaling for required

PIC operations of 4096 nodes
(24567 GPU’s) on Summit
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PUMIpic for XGC Gyrokinetic Code

— Mesh distribution takes advantage
of physics defined model/mesh

— Separate parallel field solve on
each poloidal plane

= XGC gyro-averaging
for Charge-to-Mesh

» PETSc used for field solve
— Solves on each plane

— Mesh partitioned over
Nranks/NpIanes ranks

— Ranks for a given plane form MPI
sub-communicators
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XGC uses a 2D poloidal plane mesh considering particle paths

N

- Mesh

|2 ] ‘J‘ >
” % : | A ,,zh i i i
.~ Distribution

Group 1
Group 0 [Rank 16~31]
[Rank 0~15]

Plane 1

Two-level partition for solver
left) and particle push (right




Impurity Transport Code - GITR

PUMIpic capabilities needed for GITR
B Fully 3D graded/adapted meshes Ty A
based on particle distribution
B Wall interactions

B Plan on supporting the future
case where the fields evolve
based on particle position

Development of 3D mesh
version of GITR initiated

B Based on PUMIpic

B Efforts focused on GPU based
on-node operations

B Complete version available,
performance improvement
underway

Possible

graded mesh
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Creation of Parallel Adaptive

Loops
Parallel data and services are at the core
« Geometric model topology for domain linkage
Mesh topology — it must be distributed

Simulation fields distributed over geometric model and
mesh

¢ PartItIOn CO ntI'Ol Physics and Model Parameters Input Domain Definition with Attributes
¢ Dynam|C Ioad Q non-manifold
. . Meosh Generation model construction
balancing required “Solution DA yng/or acaptation [N
at multiple steps frenster interrogation
. PDE’s and
¢ API,S tO ||nk tO discretization )
methods NBALUNIES  Complete
— CAD mesh size ParaIIeI Data & Services htopology Domain

field Domain Topology Definition

— i Correctlon
e
Error esﬁmation ms*?  Postprocessing/
— Post i
Mesh Based ci/sisZ;oliczZi?l;g/

— etc

Analysis é Dynamlc Load Balancmg

calculated flelds mesh with fields
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Parallel Adaptive Simulation Workflows

« Automation and adaptive methods critical
to reliable simulations

velocity Magnitude
4.50 9.00 13.5

* In-memory examples

— MFEM - High order
FE framework

— PHASTA — FE for NS

— FUN3D - FV CFD

— Proteus — multiphase FE
— Albany — FE framework

e L e T T T T T TR T TR

—_— ACEBP —_— ngh Order FE ILCcryomoduIeof8STuperconductingRFcavities
electromagnetics |
— M3D-C1 - FE based MHD ey
— Nektar++ — ngh order FE flow Fields &’ patticteactelerator
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Fields in beam frame moving at speed of light



Application interactions — Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

Final mesh with

Initial mesh with
12 elements

A
3

efield_Magnitude

0.00 7.5 150 22.5 30.0
o

efield_Magnitude

0.00 7.5 150 22.5 30.0
o

This figure shows the adaptation results for the CAV17 model. (top left) shows
the initial mesh with ~126K elements, (top right) shows the final (after 3
adaptation levels) mesh with ~380K elements, (bottom left) shows the first
eigenmode for the electric field on the initial mesh, and (bottom right) shows the
°6 ATPESC 2020, Julfirst eigenmode of the electric field on the final (adapted) mesh. 56



Application interactions — Land Ice

= FELIX, a component of the Albany
framework Is the analysis code

- Omega_h parallel mesh adaptation , ..
IS Integrated with Albany to do: ™

= Estimate error
= Adapt the mesh

= |ce sheet mesh is modified to
minimize degrees of freedom

= Field of interest is the ice sheet
velocity
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Application interactions — RF Fusion

& Bl

» Accurate RF simulations require
— Detailed antenna CAD geometry
— CAD geometry defeaturing
— Extracted physics curves from EFIT
— Faceted surface from coupled mesh

— Analysis geometry combining CAD,
physics geometry and faceted surface

o 5 6 op e Prtm ot 16) |
=599 S0y F
CAD model of antenna arra

— Well controlled 3D meshes —
for accurate FE calculations -
in MFEM “ \ =
— Conforming mesh adaptation | :
with PUMI Y A
-
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